000 01627nam a22002537a 4500
003 OSt
005 20221215104001.0
008 221215b |||||||| |||| 00| 0 eng d
020 _a0412039915
040 _aECOPH
_cECOPH
245 _aBayesian data analysis /
_c Andrew Gelman ... [et al].
260 _aLondon :
_bChapman & Hall,
_c1995.
300 _axix, 526 pages :
_b illustrations
_c24 cm
490 _aTexts in statistical science.
500 _aReprint 1997.
504 _aIncludes bibliographical references (pages 489-512) and indexes.
505 _aPart I. Fundamentals of Bayesian Inference -- 1. Background -- 2. Single-parameter models -- 3. Introduction to multiparameter models -- 4. Large-sample inference and connections to standard statistical methods -- Part II. Fundamentals of Bayesian Data Analysis -- 5. Hierarchical models -- 6. Model checking and sensitivity analysis -- 7. Study design in Bayesian analysis -- 8. Introduction to regression models -- Part III. Advanced computation -- 9. Approximations based on posterior modes -- 10. Posterior simulation and integration -- 11. Markov chain simulation -- Part IV. Specific models -- 12. Models for robust inference and sensitivity analysis -- 13. Hierarchical linear models -- 14. Generalized linear models -- 15. Multivariate models -- 16. Mixture models -- 17. Models for missing data -- 18. Concluding advice.
650 _xBayesian statistical decision theory.
650 _xMathematical statistics.
650 _xBayesian methods
700 _aGelman, Andrew.
830 _aTexts in statistical science.
942 _2lcc
_cBook
999 _c335
_d335